

Semantic Reviews
Goodbye ambiguous comments!

Ambiguous Code Review Comments

Did you think about [random unrelated library]?

Your function doesn’t handle [use case].

What happens if someone passes null here?

You could have named this [...] instead.

Solution: Semantic Comments

How? Prefix your comments
with a label to express intent.

● Clarifies intent.
● Adds clear expectations
● Removes ambiguity.

Suggestion: [some library]
might make this easier.

Important: Your function
doesn’t handle [use case].

Based on a Blog Post by Kevin Schaal

https://www.m31coding.com/blog/semantic-reviews.html

https://www.m31coding.com/blog/semantic-reviews.html
https://www.m31coding.com/blog/semantic-reviews.html

Remark

“I have something that I’d like to
say.”

● No change expected
● Good for positive feedback
● Basically an FYI

Remark: I like your
approach here. Very clever.

Remark: This is fine now but
might start breaking when

we scale up.

Question

“I have a genuine question and
I’d like an answer.”

● No change expected
● Answer is expected
● Leads to conversation

Question: How much will
this cost per request?

Question: Did you test this
when [some edge case]?

Hint

“I’d like to share something you
might find interesting in the
future.”

● No change expected
● Good for teaching and

sharing knowledge

Hint: Check out [library], I
think that it handles your

user case.

Hint: You can avoid the nil
check by initializing the

map.

Suggestion

“I have a suggestion and I
expected you to think about it.”

● Change is not expected
● It should be considered
● Up to the PR author

Suggestion: Moving this try-
catch to the caller will save

a bunch of copy-paste.

Suggestion: Rename this
function to [new name] to
match what it really does.

Important

“This is important to me and I
expect a change. I’m open to
discussion.”

● Change is expected
● Open to conversation

Important: You’re better off
crashing here. That way
we’ll restart and recover.

Important: Do one big SQL
query instead of small

queries in a loop.

Crucial

“This must not be merged. It has
a severe issue and must be
changed.”

● Change expected
● Non-negotiable

Crucial: This is vulnerable to
SQL injection; use a
prepared statement.

Crucial: Your lambda has an
infinite recursion here.

Remark: That’s all folks!

Suggestion: Applaud!

Hint: Find me after for questions.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

