Semantic Reviews

Goodbye ambiguous comments!

Ambiguous Code Review Comments

Did you think about [random unrelated library]?

s Your function doesn’t handle [use case].

What happens if someone passes null here?

°o_o You could have named this [...] instead.

Solution: Semantic Comments

H_OW? Prefix your comrr_lents Suggestion: [some library] (&;
with a label to express intent. might make this easier. =
e Clarifies intent.
: o o Important: Your function
* Adds clear expectations - doesn’t handle [use case].

* Removes ambiguity.

Based on a Blog Post by Kevin Schaal

https://www.m31coding.com/blog/semantic-reviews.html
https://www.m31coding.com/blog/semantic-reviews.html

Remark

“I have something that I'd like to

say.” Remark: | like your

approach here. Very clever.

* No change expected
o Remark: This is fine now but
e Good for positive feedback might start breaking when

we scale up.

* Basically an FYI

Question

“| have a genuine gquestion and
Question: How much will I’d like an answer.”

this cost per request?

5 * No change expected

. Question: Did you test this

when [some edge case]? Answer is expected

e |Leads to conversation

Hint

“I'd like to share something you
might find interesting in the
future.”

* No change expected

* Good for teaching and
sharing knowledge

Hint: Check out [library], | —
think that it handles your ‘s
user case.

o)

& Hint: You can avoid the nil
U, check by initializing the

map.

Suggestion

“| have a suggestion and |

: suggestion: Rename this expected you to think about it.”
- function to [new name] to

match what it really does.

o)

. o * Change is not expected
Suggestion: Moving this try-

catch to the caller will save = * |t should be considered
a bunch of copy-paste.
* Up to the PR author

Important

“This is important to me and | 5
expect a Change_ I'm open to Important: You're better off
discussion.” crashing here. That way g

we’ll restart and recover.

* Change is expected |
Important: Do one big SQL

* Open to conversation S query instead of small
queries in a loop.

Crucial

“This must not be merged. It has
Crucial: This is vulnerable to a severe I1ssue and must be

SQL injection; use a "
prepared statement. Changed'

 Change expected

Crucial: Your lambda has an G - Non-negotiable
infinite recursion here.

Remark: That's all folks! L ‘
. J Suggestion: Applaud!

Hint: Find me after for questions. L .

Y

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

